editing disabled

Having 2 large steps and 17 small steps, this MOS uses a generator which is too sharp to be an "ordinary" ~5:3. However, the accumulated sharpness of the generator leads to "ordinary" ~8:5s and ~5:3s in three steps after factoring out tritaves.

Generator
cents
L
s
3g
Notes
9\19






900.926
100.103
800.823
L=1 s=1






55\116
901.789
114.773
98.377
803.412
L=7 s=6





46\97

901.958
117.647
98.039
803.919
L=6 s=5






83\175
902.07
119.5515
97.815
804.255





37\78


902.209
121.92
97.536
804.673
L=5 s=4






102\215
902.323
123.848
97.309
805.013






65\137

902.387
124.946
97.18
805.207







93\196
902.458
126.15
97.0385
805.42




28\59



902.623
128.946
96.71
805.913
L=4 s=3






103\217
902.771
131.4715
96.4125
806.359






75\158

902.827
132.415
96.3015
806.521







122\257
902.874
133.211
96.208
806.666





47\99


902.948
134.482
96.058
806.89
L=7 s=5






113\238
903.029
135.854
95.897
807.132






66\139

903.0865
136.831
95.782
807.3045







85\179
903.163
138.131
95.629
807.534



19\40




903.429
142.647
95.098
808.331
L=3 s=2






86\181
903.6913
147.1125
94.572
809.119






67\141

903.766
148.3795
94.423
809.343







115\242
903.822
149.327
94.312
809.51





48\101


903.899
150.65
94.156
809.743







125\263
903.971
151.867
94.013
809.958
Golden Trans-Arcturus[19] is near here





77\162

904.016
152.626
93.924
810.092







106\223
904.068
153.521
93.818
810.25




29\61



904.2081
155.898
93.539
810.669
L=5 s=3






97\204
904.361
158.496
93.233
811.128






68\143

904.426
159.605
93.103
811.324







107\225
904.485
160.6095
92.9845
811.50





39\82


904.5884
162.362
92.778
811.81
L=7 s=4






88\185
904.714
164.493
92.5275
812.186






49\103

904.8135
166.19
92.328
812.4855







59\124
904.9625
168.722
92.03
812.9325


10\21





905.693
181.139
90.569
815.124
L=2 s=1






51\107
906.5393
195.528
88.876
817.663






41\86

906.746
199.042
88.463
818.283







72\151
906.8925
201.532
88.17
818.7225





31\65


907.086
204.826
87.7825
819.304
L=7 s=3






83\174
907.254
207.685
87.446
819.808






52\109

907.355
209.3895
87.246
820.109







73\153
907.469
211.328
87.0175
820.451




21\44



907.751
216.131
86.4525
821.299
L=5 s=2






74\155
908.03
220.872
85.895
822.135






53\111

908.141
222.7515
85.674
822.467







85\178
908.237
224.388
85.481
822.756





32\67


908.396
227.099
85.162
823.234







75\157
908.577
230.173
84.8005
823.777






43\90

908.712
232.461
84.531
824.18







54\113
908.899
235.64
84.157
824.741



11\23




909.631
248.081
82.694
826.937
L=3 s=1






45\94
910.51
263.036
80.934
829.576






34\71

910.795
267.881
80.364
830.431







57\119
911.0205
271.708
79.914
831.1065





23\48


911.353
277.368
79.248
832.105
L=7 s=2






58\121
911.681
282.9355
78.593
833.088
cube root of 3*phi is near here





35\73

911.896
286.596
78.1625
833.734







47\98
912.162
291.116
77.631
834.531




12\25



912.938
304.313
76.078
836.86
L=4 s=1






37\77
913.926
321.109
74.102
839.824






25\52

914.401
329.1845
73.152
841.249







38\79
914.864
337.055
72.226
842.638





13\27


915.756
352.214
70.443
845.313
L=5 s=1






27\56
917.014
373.598
67.927
849.087






14\29

918.185
393.508
65.5847
852.601
L=6 s=1






41\89
920.301
429.474
61.353
858.947
L=7 s=1
1/2






950.9775
0.00
950.9775
L=1 s=0